Undergraduate Seminar:
The Probabilistic Method

Chapter 1



Topic

- This seminar will closely follow the book The Probabilistic Method by Alon and
Spencer (which can be found for free online)

- This book covers the probabilistic method, a mathematical method for using
probability to solve combinatorics problems

- Required background is a basic understanding of probability, for instance,
Random Variables
Expectation
Independence
Conditioning



Logistics

- We will meet for 2 hours each week from 9:30-11:30 NYC time on Fridays.

- One student will present each week (therefore the number of times each
student presents may depend on enrollment, however it should be no more
than 3).

- Grading will be based on talk preparation and attendance (see syllabus for
more details)



Equations in Slides

If creating slides all equations are expected to be LaTeXed. There are several
ways to do this, here are a few that | would recommend.

- Install the browser add on called math equations
- Here is the link to download the extension.
- Pro: it is probably the most efficient for small things like binomial coefficients since it works

directly in Google Slides.
- Con: Does not have the same versatility you would have in your own TeX document (It doesn’t

seem to allow you to use external packages such as amsthm, but let me know if you figure out
how to do this!)

- Online TeX editor

- Here is an example.
- Pro: This has a math keyboard that will help if you are not so comfortable with LaTeX

- Con: Not as efficient as the browser add on and also lacks the versatility

- Your own TeX editor
- Pro: All the versatility you could dream of!
- Con: Also not very efficient



A Sample of the Method! (Section 1.1)

The general idea of the probabilistic method is using probability to prove that
certain structures exist. We define probability spaces and show that such a
structure occurs on this space with positive probability (and therefore, must be
possible). To illustrate this, we will use a simple example, the Ramsey number!



The Ramsey Number

The Ramsey Number R(j,k) is the smallest integer n such that in any 2-coloring of
a complete graph on n vertices (here on denoted by K(n)) by red or blue there
must exist either a completely red K(j) or a completely blue K(k).

Examples:
- R(2,2)=2
- R(2,3)=3



We will now use the method to prove the following proposition:

k
If (;;)21‘(2) < 1then R(k, k) > n. Thus R(k, k) > |2"?| forall k > 3

Proof. Consider a random 2-coloring of the edges of K(n) where each edge is
colored independently with probability %z of red and probability 72 of blue. For a set
R of k vertices in K(n), we define A(R) to be the event that the subgraph onRis
either all red or all blue. Then we have, (y) (D ( ) 1)

Pray =20 2

To see this, note that there are ('2“) edges in the subgraph on R. We can write A(R)
as the disjoint union of the event the subgraph on R is all red or all blue, both of
which have probability (1)(), so we get, pr(a(r)) = 2(2)®)) = 2 () Since there are (})
choices for R, the probability that at least one of these events happens is at most

()2 P(UAD < T D)



Now we have shown,

Pr[K(n) has a complete red or blue subgraph of size k| < @ <1

Here we use the key insight of the probabilistic method. Since the probability of
this not occuring is positive, there must exist a 2-coloring for which there is no
complete red or blue subgraph of size k, which means that n cannot be the
Ramsey number R(k,k), and therefore R(k,k) > n.



Furthermore, if we take k =2 3 and we set n = Lz’“/zjthen we have,

[k
20 < 2r e oy

So, in particular this tells us that R(k,k) > |2%/2|.



Some Remarks

- Could this have been done using a counting argument?
- Yes, but it would probably be way more annoying, and later on we will see proofs where the
probability is not so easily replaced.

- Can we actually construct a 2-color on K(n) that has no monochromatic K(k)?
- The proof is non-constructive but does lead us towards a very efficient randomized algorithm!

- This is much better than an exhaustive search since there are 2(’5) possible 2-colorings of
K(n).
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1.2 Graph Theory s

A tournament T on a set V of n players is an orientation on the edges of the
complete graph on on the set of V vertices. We can think of T as being a directed
graph on the vertex set V for which exactly one of the edges (v,w) or (w,v) is
included for every pair v,w in V.

We call this a tournament because you can think of the edge (v,w) as “v beats w”.

Examples: + o\



We say a tournament T has the property S if for every set of of k vertices in V
there exists a vertex that beats them all. That is, for all A CV, |A| =k, there is some
vinV such that (v, a)is in T for all a in A.

Examples: L 1 ek S
A

/\‘M A

Question: Is it true that for every finite k there is a tournament with the property
S,?
k



Construct random tournaments:

For each pair of vertices v,w in V, we choose between the edges (v,w) and (w,Vv)
with probability ¥4 each. As a result all 5(3)are equally likely (i.e. the probability
space is symmetric, which is often the case when applying the method).

We use this probability space to prove the following theorem:

If (7)(1 — 27%)"~*% < 1 then there is a tournament on n vertices with the property Sy.



If (Z) (1-— Z_k)"‘k < 1 then there is a tournament on n vertices with the property .S;.

Let T be a random tournament on the set V = {1,...,n}. For every fixed subset KCV
of size k, let AK be the event that there is no vertex that beats them all. Then we

have that Pr(A;) = (1 - 2—k)n—k

This is because for any fixed vertex v in V - K, the probability that v does not beat
all of the vertices in K is 1 — 2% and these events are independent for distinct

vertices. ok Jaend ows (A~ = PA)PLR)

Su‘o%‘l' doss no'-

Therefore we obtain the bound, , duwve aveV ok bets
Mam ol &= Duwr dowtr. > wot So

Pr(Urcy ik 4) < Ccevi— Pride) = () (1 =27

By assumption in the theorem, this bound is < 1. Therefore with nonzero
probability this tournament has the property S, implying that such a tournament
exists.



A dominating set of an undirected graph G = (V,E) is a set U CV such that every
vertex v in V has at least one neighbor in U.
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We can use the probablllstic method to prove the following bound for a dominating
set.

Examples

Let G = (V, E) be a graph on n vertices, with minimum degree § > 1.

1+In(6+1)

511 vertices.

Then G has a dominating set of at most n




Let G = (V, E) be a graph on n vertices, with minimum degree § > 1.

1+In(6+1)

511 vertices.

Then G has a dominating set of at most n

We will randomly generate a vertex set X by including each vertex v independently
with probability p (where p will be specified later). We can compute the expected

value of X Bl|X) = B[Sy x| =mp ¥ g 1
> ve X

Define the set Y, = {vin V: v and its neighbors are not in X}. Then we can bound
the expected value of Y. :

EllYx|] = > ev Ellveyry ] <n(l — p)otl

Where the last inequality comes from computing the probability that v and its
neighbors are all not in X in the worst case scenario where v has degree .
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So now we have,

Therefore there must exist at least one X such that | X U Yx| < np + n(1 — p)°*!
(this follows from the principle that if X is a random variable-with mean m, then X
cannot be strictly larger than m).

Note that X U Yy is clearly a dominating set. To obtain the bound from the
statement of the theorem, we simply optimize over p.



np +n (1-p )
L /

Optimization:

1. Apply the bound 1 — p < e P to bound the formula by np + ne?(¢+1)
2. Take the derivative and set it equal to O:

n+ —n(d+ 1)e P =0

3. Solve the equation to find a minimum at

_ In(0+1)
P= =1




Remarks

1. The method did not immediately give the bound, we had to choose p later.
Additionally, we weakened our bound to get a cleaner result.

2. Note the use of expectation! Particularly the mean principle.

3. On page 5 there is a summary of an interesting algorithmic proof of this
theorem that is interesting.

4. There is also a discussion of using dominating sets to determine
edge-connectivity.



1.3 Combinatorics

A hypergraph is a pair H = (V,E) where V is a finite set whose elements are called
vertices and E is a family of subsets of V, called edges. It is n-uniform if each of
its edges has exactly n elements (note that a normal graph is a 2-uniform
hypergraph). We say that H has property B, or that it is 2-colorable if there is a
2-coloring of V such that no edge is monochromatic.

Let m(n) be the minimum number of edges of an n-uniform hypergraph that does
not have property B.



Every n — uniform hypergraph with less than 2"~ edges has property B, therefore m(n)
9

> on-l,

Let H = (V, E) be a n-uniform hypergraph W|th less than 27~1. We randomly color V

by 2 colors, coloring each vertex i % mm'probablllty Y2 of each color. For
each edge e, let A_ be the event that e is colored monochromatically. Clearly,

Pr(4.)=2"" (‘JZ')“ - (2

So we can bound the probability that this random 2 coloring has at least one
monochromatic edge by,
A

Pr(Monochromatlc edge) < Y. 5 Pr(4.) <2" 12" =1

)

Therefore there must exist a 2-coloring that has no monochromatic edges.

‘—éH‘-PM.xPN{Lw{':) B



We can obtain a better bound using a slightly better probability space! Here the
probability space will be random over the edges of H rather than the coloring.

Let V be a set with v points (v will later be optimized). Let % be a coloring of V by 2
colors, with nred points and b = v - a blue points. Let S be a random n-set
uniformly selected from all (v) possibilities. Then,

n

Pr( S is monochromatic under X) =

Assuming that v is even for convenience, this expression is minimized at a = b.
Therefore we have that,

(")
(+)

Pr(S is monochromatic under x) >




Letting S1,-..Sm be uniformly and independently chosen n-sets, with m to be
determined later.

For each coloring X let Ax be the event that none of the S, are monochromatic
under X (i.e. that X is a valid 2-coloring).
()

PT(AX) < (1 T (v) )m
D
There are 2" possible colorings, so, 1 — probabiliby not valid on
a 4iven QAEM- 2(v,' £
Pr(At least one coloring is valid a 2-coloring of S1,...,S,,) < Zx Pr(A,) & 2°(1 — " 1( 1_-

Clearly if this quantity is less than 1, m(n) < m. Therefore we want to optimize for
m as small as possible such that this quantity is <1.



Optimizing 2Y(1 — 2(U7/’2) )™

2(4) (Z) )

Letp= OB We again apply the bound 1 —p < e™2 When m = [”1;121 then,
- Ll
P(1—p)m < 22erm <1 P SOFR

ol

So now we want to choose v that minimizes this expression for m, i.e, that
minimizes v/p. See page 8 in the book for details. Ultimately it yields the bound,

m(n) < (1+ o(1)) 6122n22"

We will skip theorem 1.3.3 in the notes for time. See page 8 if curious.



1.4 Combinatorial Number Theory

A subset A of the integers is called sum-free if there does not exist any a,b,cin A
such thata+b =c. (A* A APl =d
Example: Odd integers



Every set B = {by, ..., b, } of nonzero integers contains a sum-free subset A of size [4| > %

Let p = 3k + 2 be a prime number which satisfies p > Z‘maxz- |bi]. Set C ={k + 1,
k+2, ..., 2k+ 1}. Then note that C is a sum free subset of Z/pZ, and that & = k1 1

p—1 3k+1
Hetr ) - 24+ éﬂn > iHu
Choose at random an element x from {1, 2, ..., p - 1} and set d. = xb. (mod p).dAsx

ranges over all possible values, d. ranges over all elements of Z / pZ Therefore

deanl S ¢
Pr(d, ec>>_ fandemly Lhuose X un® Feow

(axbiled D e 1 gy
Thus the expected value of the number of i such that d. is in C is n/3. Therefore
there must be an x such that at least n/3 of the d. are in C. If {bim, } are such
that d ,are all in C, then the set is sum-free. Thus by the expectatlon pr|n0|ple g Free

%there must exist a sum free set of size greater than n/3. i b}~ 8d T A

bi +b)-0:) (4
Y\. . . & 7‘( A ' X
VL¢0 Jzn/%Y\J ’Xb..‘},{.l\; _b
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Summary

- Some new techniques we saw today:
- Using the expectation to bound and instance of a random variable
- Bounds and approximations, loosening the bounds to get cleaner results
- Different options for what we could take to be random,

- We saw the method used in a number of different ways






